CONFIRMED APRIL 1993

Methanol for industrial use —

Part 1: Specification for methanol

UDC 661.721:543.06

Contents

		Page
Committees responsible Foreword		Inside front cover ii
2	Description	1
3	Sampling and size of sample	1
4	Colour	1
5	Density	1
6	Distillation range	1
7	Residue on evaporation	1
8	Miscibility with water	1
9	Alkalinity or acidity	1
10	Aldehydes and ketones	1
11	Sulphur compounds	1
12	Permanganate test	1
13	Water content	1
Publications referred to		Inside back cover

1 Scope

This British Standard specifies requirements for methanol suitable for industrial purposes.

NOTE The titles of the publications referred to in this standard are listed on inside back cover.

2 Description

The material shall be clear and free from matter in suspension, as assessed by visual inspection, and shall consist essentially of methanol, CH₃OH.

3 Sampling and size of sample

A sample of not less than 1 L shall be taken in accordance with BS 506-2.

4 Colour

The colour of the material shall not exceed 15 Hazen units when measured as described in BS 5339.

5 Density

The density of the material at 20 $^{\circ}$ C shall be not lower than 0.791 g/mL and not higher than 0.794 g/mL when determined as described in BS 4522.

6 Distillation range

When the material is distilled as described in BS 4591, modified as specified in BS 506-2, the distillation range at 1 013 mbar $^{1)}$ pressure shall not exceed 1.0 $^{\circ}\mathrm{C}$ and shall include the value 64.6 $^{\circ}\mathrm{C}$.

7 Residue on evaporation

The residue on evaporation on the material shall not exceed $0.001\,\%\,(m/m)$ when determined as described in BS 4524.

8 Miscibility with water

The material shall not show opalescence when mixed with distilled water as described in BS 506-2.

9 Alkalinity or acidity

The material shall not be alkaline to phenolphthalein and shall not contain more than 0.003% (m/m) of acid, calculated as formic acid (HCOOH) and determined as described in BS 506-2.

10 Aldehydes and ketones

The material shall not contain more than 0.005 % (m/m) of aldehydes and ketones, calculated as acetone $(\mathrm{CH_3COCH_3})$ and determined by the spectrometric method described in BS 506-2.

11 Sulphur compounds

The material shall not contain more than 0.0001 % (m/m) of sulphur compounds, calculated as S and determined as described in BS 506-2.

12 Permanganate test

The material shall not cause the colour of a standard potassium permanganate solution to fade sufficiently in 30 min to match or be lighter than the matching solution when tested as described in BS 506-2.

13 Water content

The material shall not contain more than 0.1 % (m/m) of water when determined as described in clause 2 of BS 2511:1970.

 $^{^{1)}}$ 1 mbar - 100 N/m² = 100 Pa.