Engine Valves for Automobiles

2

3

4

5

6

D

Fillet radius

Stem

Groove

Stem end

Head

Margin

1. Scope

This Standard specifies engine valves for automobiles (hereinafter referred to as valves).

Remark: In this Standard, units and numerical values are based on SI (International System of Units), while units and numerical values given in { } are customary units system, and are specified values.

2. Purpose

This Standard aims to ensure the standardization of valves, unification of quality standard and reduction of cost.

3. Nomenclature

The nomenclature of valve parts shall be as shown in Fig.1.

and joint.

the valve guide

to be fitted.

side of stem

the face and head

and tip

Strictly speaking, it consists of

a sloped portion under the top, rounded portion under the top

The cylindrical portion including

the portion in sliding contact with

The portion in which the cotter is

The portion between the groove

The face of top on the opposite

The portion intermediate between

The conical face in contact with

5. Materials

5.1 Chemical Composition

The chemical composition of materials shall be as shown in Table 1.

5.2 Mechanical Properties

The mechanical properties of materials shall be as shown in Table 2.

				20.00		5	Chen	nical co	mposit	ion (%	5}	in Maria				-	
Symbol	C	Si	Mn	P	s	Cu	Ni	Cr	Mo	Co	W	AJ	Ti	N	Fe	Other	Application
SUH 1	0.40	3.00 3.50	Max. 0.60	Max. 0.030	Max.	-		7.50 ~ 9.50			-	-	-	-	Base	-	Intake valve
SUH 3	0.35	1.80 2.50	Max. 0.60	Max.	Max. 0.030	4	-	10.00 12.00	0.70 ~ 1.30	-	-	-	-	-	Base	-	Intake valve
SUH 11	0.45	1.00 2.00	Max. 0.60	Max. 0.030	Max.	-	Max. 0.60	7.50 9.50	-	-	-	-	-	-	Base		Intake valve
SUH 31	0.35	1.50 2.50	Max. 0.60	Max. 0.040	Max.	-	13.00	14.00		-	2.00 ~ 3.00	-	-	-	Base	-	Exhaust valve
SUH 35	0.48 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Max. 0.35	8.00 10.00	Max. 0.040	Max. 0.030	Max. 0.30	3.25 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	20.00 22.00	1		2			0.35	Base		Exhaust valve
SUH 36	0.48	Max. 0.35	8.00 10.00	Max. 0.040	0.040	Max. 0.30	3.25 ~ 4.50	20.00 22.00	-	-	-	- 1	<u></u>	0.35	Base		Exhaust valve
SUH 37	0.15	Max. 1.00	1.00	Max. 0.040	Max. 0.030	Max. 0.30	10.00	20.50 22.50	-	-	-	-	-	0.15 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Base		Exhaust valve
SUH 38	0.25	Max. 1.00	Max. 1.20	0.18	Max. 0.030	Max. 0.30	10.00	19.00 21.00	1.80	-	-	~	1	2	Base	B 0.001~ 0.010	Exhaust valve
NCF 751	Max. 0.10	Max. 0.50	Max. 1.00	Max. 0.030	Max. 0.015	Max. 0.50	Min. 70.00	14.00 17.00	-	<u>22</u>	-	0.90	2.00 ~ 2.60	R	5.00 9.00	Nb+Ta 0.70~ 1.20	Exhaust valve
NCF80 A	0.04	Max. 1.00	Max. 1.00	Max.	Max. 0.015	Max. 0.20	Base	18.00 21.00	-	Max. 2.00	-	1.00 ~ 1.80	1.80 2.70	-	Max.	à.	Exhaust valve
CoCr 1	2.0 ~ 3.0	0.4 ~	Max. 1.00	-	-	-	Max. 3.0	26.0 33.0	Max.	Base	11.0 14.0	-		-	Max. 3.0	Max. 0.5	Filling for stem end
CoCr 6	0.9 ~ 1.4	0.4 ~ 2.0	Max. 1.00	- 237	1	-	Max. 3.0	26.0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Max.	Base	3.0 ~ 6.0			17	Max. 3.0	Max. 0.5	Filling for face
CoCr 12	1.2 ~ 1.7	0.4 ~ 2.0	Max. 1.00	-	Ŧ		Max. 3.0	26.0. ~ 33.0	Max. 1.0	Base	7.0 ~ 9.5	-	-	-4	Max. 3.0	Max. 0.5	Filling for face
CoCr 32	1.5 ~ 2.0	0.9 ~ 1.3	Max. 0.3	-	-	-	21.0 24.0	24.0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Max. 0.6	Base	11.5 13.0	-		-	Max. 2.0	Max. 0.5	Filling for face

Table 1

Remarks 1: SUH1, SUH3, SUH11, SUH31, SUH35, SUH36, SUH37 and SUH38 shall conform to JIS G 4311 (Heat-Resisting Steel Bars), and NCF751 and NCF80A to JIS G 4901 (Corrosion-Resisting and Heat-Resisting Superalloy Bars).

т	a	ы		2
	a		c	~

)	loat treatm	ent 'C					Mecha	nical propertie	15		
Symbol	Annealing	Hardening	Tempering	Solution heat treatment	Aging	Yield strength N/mm ² lkgf/mm ²	Tensile strength N/mm ⁹ Jkgf/mm ⁹	Elongation %	Reduction of area %	Charpy impact value J/cm ¹ kgf-m/cm ¹	Brinell hardness He	Rockwell hardness	Heat treating conditions
SUH 1	800~900 Slow cooling	990 ~1080 Oil cooling	700~850 Quenching	1	-	686 and over 1701 and over	932 and over i951 and over	15 and over	35 and over		269 and over	82	Hardening Tempering
SUH 3	800~900 Slow cooling	980 ~1080 0il cooling	700~-800 Quenching	104	-	686 and over 1701 and over	932 anb over 1951 and over	15 and over	35 and over	20 and over 121 and over	269 and over	-	Hardening Tempering
SUH 11	750~850 Slow cooling	1000 ~1050 Oil cooling	660~750 Quenching	-	-	686 and over \70 and over	883 and over 1901 and over	15 and over	35 and over	20 and over 2 and over	262 and over		Hardening Tempering
SUH 31	-	-	->	950 ~1050 Quenching	÷	314 and over 321 and over	735 and over 1751 and over	30 and over	40 and over	1	248 and over	-	Solution heat treatment
SUH 35	-	1929	-	1100 ~1200 Quenching	730~780 Air cooling	559 and over 57 and over	883 and over 1901 and over	8 and over	-	-	302 and over	-	Aging after solution heat treatment
SUH 36	-	-	-	1100 ~1200 Quenching	730~780 Air cooling	559 and over 1571 and over	883 and over 1901 and over	B and over	-	10	302 and over	-	Aging after solution heat treatment
SUH 37		-	157	1050 ~1150 Quenching	750~800 Air cooling	392 and over [40] and over	785 anv over 1801 and over	35 and over	35 and over	-	248 and over	-	Aging after solution heat treatment
SUH 38	-	-	-	1120 ~1150 Quenching	730~760 Air cooling	490 and over 1501 and over	883 and over 1901 and over	20 and over	25 and over	-	269 and over	-	Aging after solution heat treatment
NCF 751	-	-	-	1135 ~1165 Quenching	830~860 × 24 Hrs Air cooling 690~720 × 20 Hrs Air cooling	618 and over [63] and over	961 and over (98) and over	8 and over	-	-	-	-	Aging after solution heat treatment
NCF 80A	-	-	-	1050 ~1100 Quenching	690~710× 16 Hrs Air cooling	600 and over [61] and over	1000 and over 1021 and over	20 and over	2	1970	-	-	Aging after solution heat treatment
CoCr 1	-	-	-	-	A+	-	-	-	1	1 -	-	50~62	-
CoCr 6	-	-	-	-	V-94			-	-	-	-	40~50	-
CoCr 12	-	-	-	-	1		-	-	-	1.20	-	45~55	-
CoCr 32	-	-	-	-		-	-		-	- 27	-	38~48	-

Remarks: 1: SUH1, SUH3, SUH11, SUH31, SUH35, SUH36, SUH37 and SUH38 shall conform to JIS G 4311 (Heat-Resisting Steel Bars), and NCF751 and NCF80A to JIS G 4901 (Corrosion-Resisting and Heat-Resisting Superalloy Bars).

2: The hardness of CoCr1, CoCr6, CoCr12 and CoCr32 is the hardness after gas welding and is applied as reference value.

6. Appearance, Surface Roughness and Tip Hardness

6.1 Appearance

There shall not exist any flaws, burrs and other harmful defects on the valve.

6.2 Surface Roughness

The roughness of finished surface of valve shall be as specified in Table 3.

Finished surface	Surface roughness	Remarks		
Face	2 25 (grinding finish)	The feature of the after discussion contactually		
Stem	5.25 (grinding rinish)	to the grinding direction.		
Tip	3.2S or 6.3S (grinding finish)			
	18\$ (12.5\$)	For the locking type, externally locked type		
Groove	6 35 or 12 55	For the locking type, internally locked type,		

-	-			-
1	a	b	le	з

6.3 Tip Hardness

The hardness of hardened tip shall be more than H_RC48 or equivalent for SUH3, and H_RC50 or equivalent for SUH1 and SUH11. In case of the Vickers hardness, it shall be more than $H_V(10)484$ or equivalent for SUH3, and $H_V(10)513$ or equivalent for SUH1 and SUH11.

7. Shape and Dimensions

7.1 Indication of Dimensions

The dimensions of valve shall be indicated as shown in Fig. 2 or by the gauge diameter system shown in Fig. 3.

7.2 Diameter and Tolerance of Stem

- The diameter of stem shall be, as a rule, as specified in Table 4.
- (2) The tolerance on the diameter (D₂) of stem shall be, as a rule, as specified in Table 5.

Table 4

112-01	-			17		10.000		5 mil	-	1000	9 - S	Unit	
4.5	5	5.5	6	6.5	7	7.5	8	8.5	9	9.5	10	11	12

100		
	_	-

Diameter of stem	Tolerance		
6 and under	0.012		
Over 6 to 10 incl.	0.015		
Over 10 to 12 incl.	0.018		

7.3 Tolerances

(1) Tolerances of Valve Parts

The tolerances of valve parts shown in Fig. 2 shall be as specified in Table 6.

(2) Ordinary Dimensional Tolerance for Valve Parts

Unless otherwise specified, the dimensional tolerance for valve parts shall be common grade specified in JIS B 0405 (Permissible Machining Deviations in Dimensions without Tolerance Indication) and extra grade specified in JIS B 0415 [Dimensional Tolerance for Steel Die Forgings (Hammer and Press Forging)] and B 0416 [Dimensional Tolerance for Steel Die Forgings (Upsetting)].

Table 6

	1997	953	Unit: mm
62	Item	1.1.1	Tolerance
	Overall length	L,	0.5
23	Groove position	L.	0.4
	Straight grinding length	L.,	2.0
	Top thickness	t,	0.5
	Face height	£2	0.4 or 0.6
2	Margin thickness	t ₃	0.4 or 0.6
Cri	Top external diameter	Do	0.2
	Groove diameter	<i>d</i> ₁	external 0.2 internal 0.1
	Groove width	1	0.2
			-

- Remarks 1: For the top thickness, face height and margin thickness, any two of them, for example, top thickness and face height, top thickness and margin thickness or face height and margin thickness shall be specified.
 - The groove diameter shall include that of circular groove.
 - The groove width shall exclude that of circular groove and taper groove.

7.4 Shape Accuracy

The shape accuracy of valve parts shall be as specified in Table 7.

Table 7				
Shape accuracy				
Tolerance for angle α 30'				
0.03 mm				
0.01 mm				
0.01 mm				
1/2 of tolerance for stem diameter				
0.05 mm				
0.015 mm				
0.2 mm				

Remark: The roundness of stem indicates the value obtained in the case when 60° V block was used.

8. Inspection

8.1 Material Inspection

The valve steel shall be inspected in accordance with the test methods specified in JIS G 4311 (Heat-Resisting Steel Bars) and JIS G 4901 (Corrosion-Resisting and Heat-Resisting Superalloy Bars), and shall conform to the requirements in 5.

Filling alloys shall, after filling, conform to the requirements in 5.2.

8.2 Appearance, Surface Roughness and Tip Hardness

Table 5

......

Unit: mm

(2) Surface Roughness

The roughness of finished surface of valve shall be based on JIS B 0601 (Definitions and Designation of Surface Roughness). It shall be inspected by JIS B 0651 (Instruments for the Measurement of Surface Roughness by the Stylus Method) or JIS B 0652 (Instruments for the Measurement of Surface Roughness by the Interferometric Method), and shall conform to the requirements in 6.2.

(3) Tip Hardness

The hardness of hardened tip shall be inspected by JIS B 7725 (Vickers Hardness Testing Machines) or JIS B 7726 (Rockwell and Rockwell Superficial Hardness Testing Machines) according to the agreement between the parties concerned, and shall conform to the requirements in 6.3.

8.3 Inspection of Shape and Dimensions

The shape and dimensions shall be inspected by direct measurement and limit gauge and in the following steps (1) to (9), and shall conform to the requirements in 7.

(1) Face Angle

The angle α made by the ideal shaft centre C-C of valve shown in Figs. 2 and 3 and the generating line of conical face of valve shall be measured.

(2) Deviation of Face

With the valve supported on two 90° or 60° V blocks (to be in point to point contact with the object of measurement) nearly at both ends of stem, a stopper shall be applied nearly at the centre of tip and a dial gauge shall be applied nearly at the centre of face width at right angle. Then, the valve shall be rotated to measure the deviation of indicator on the dial gauge.

(3) Roundness of Stem

With the valve supported horizontally on a 90° or 60° V block (to be point to point contact with the object of measurement), a stopper shall be applied nearly at the centre of tip and a dial gauge shall be applied at right angle just above the supporting position of V block. Then, the valve shall be rotated to measure the deviation of indicator on the dial gauge. The roundness shall be as a rule indicated by mm

(4) Straightness of Stem

With the valve supported on two 90° or 60° V blocks (to be point to point contact with the object of measurement) nearly at both ends of stem, a dial gauge shall be applied nearly at the centre between the supporting points at right angle to the stem. Then, the valve shall be rotated to measure a half of deviation of the indicator on the dial gauge.

(5) Cylindricality of Stem

The deviation in diameter of stem shall be measured.

(6) Coaxiality of Groove

With the valve supported on two 90° or 60° V blocks (to be point to point contact with the object of measurement) nearly at both ends of stem, a dial gauge shall be applied nearly at the centre of groove at right angle to the stem. Then, the valve shall be rotated to measure a half of deviation of the indicator on the dial gauge.

(7) Rectangularity of Tip

With the valve supported on two 90° or 60° V blocks (to be point to point contact with the object of measurement) nearly at both ends of stem, a stopper shall be applied nearly at the centre of tip and a dial gauge shall be applied to the circumference of tip in the axial direction. Then, the valve shall be rotated to measure a half of deviation of the indicator on the dial gauge.

(8) Rectangularity of Head

With the valve supported on two 90° or 60° V blocks (to be in point to point contact with the object of measurement) nearly at both ends of stem, a stopper shall be applied nearly at the centre of tip and a dial gauge shall be applied to the circumference of head in the axial direction. Then, the valve shall be rotated to measure a half of deviation of the indicator on the dial gauge.

(9) Face Dimensions

As is shown in **Figs. 2** and **3**, B can be specified and measured in place of t_2 . In this case, t_2 shall be calculated on the assumption that $B \cdot \cos \alpha = t_2$.